Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(15): 4279-4297, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100767

RESUMO

There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2 O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2 O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha-1 year-1 ) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2 O emissions (in kg N2 O ha-1 year-1 ) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above -25 cm. In contrast, annual N2 O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L-1 beyond which TDN seemingly ceased to be limiting for N2 O production. The new emissions data for CH4 and N2 O presented here should help to develop more robust country level 'emission factors' for the quantification of national GHG inventory reporting. The impact of TDN on N2 O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Humanos , Dióxido de Carbono/análise , Metano/análise , Agricultura , Solo , Gases de Efeito Estufa/análise , Árvores , Indonésia , Nitrogênio , Óxido Nitroso/análise
2.
PeerJ ; 8: e10283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240628

RESUMO

The COVID-19 pandemic has caused global disruption, with the emergence of this and other pandemics having been linked to habitat encroachment and/or wildlife exploitation. High impacts of COVID-19 are apparent in some countries with large tropical peatland areas, some of which are relatively poorly resourced to tackle disease pandemics. Despite this, no previous investigation has considered tropical peatlands in the context of emerging infectious diseases (EIDs). Here, we review: (i) the potential for future EIDs arising from tropical peatlands; (ii) potential threats to tropical peatland conservation and local communities from COVID-19; and (iii) potential steps to help mitigate these risks. We find that high biodiversity in tropical peat-swamp forests, including presence of many potential vertebrate and invertebrate vectors, combined, in places, with high levels of habitat disruption and wildlife harvesting represent suitable conditions for potential zoonotic EID (re-)emergence. Although impossible to predict precisely, we identify numerous potential threats to tropical peatland conservation and local communities from the COVID-19 pandemic. This includes impacts on public health, with the potential for haze pollution from peatland fires to increase COVID-19 susceptibility a noted concern; and on local economies, livelihoods and food security, where impacts will likely be greater in remote communities with limited/no medical facilities that depend heavily on external trade. Research, training, education, conservation and restoration activities are also being affected, particularly those involving physical groupings and international travel, some of which may result in increased habitat encroachment, wildlife harvesting or fire, and may therefore precipitate longer-term negative impacts, including those relating to disease pandemics. We conclude that sustainable management of tropical peatlands and their wildlife is important for mitigating impacts of the COVID-19 pandemic, and reducing the potential for future zoonotic EID emergence and severity, thus strengthening arguments for their conservation and restoration. To support this, we list seven specific recommendations relating to sustainable management of tropical peatlands in the context of COVID-19/disease pandemics, plus mitigating the current impacts of COVID-19 and reducing potential future zoonotic EID risk in these localities. Our discussion and many of the issues raised should also be relevant for non-tropical peatland areas and in relation to other (pandemic-related) sudden socio-economic shocks that may occur in future.

3.
Ambio ; 43(8): 981-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24817088

RESUMO

In this review paper, we aim to describe the potential for, and the key challenges to, applying PES projects to mangroves. By adopting a "carbocentric approach," we show that mangrove forests are strong candidates for PES projects. They are particularly well suited to the generation of carbon credits because of their unrivaled potential as carbon sinks, their resistance and resilience to natural hazards, and their extensive provision of Ecosystem Services other than carbon sequestration, primarily nursery areas for fish, water purification and coastal protection, to the benefit of local communities as well as to the global population. The voluntary carbon market provides opportunities for the development of appropriate protocols and good practice case studies for mangroves at a small scale, and these may influence larger compliance schemes in the future. Mangrove habitats are mostly located in developing countries on communally or state-owned land. This means that issues of national and local governance, land ownership and management, and environmental justice are the main challenges that require careful planning at the early stages of mangrove PES projects to ensure successful outcomes and equitable benefit sharing within local communities.


Assuntos
Sequestro de Carbono , Conservação dos Recursos Naturais/métodos , Florestas , Áreas Alagadas , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...